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8.1 INTRODUCTION

Characterizing an adaptive optics (AO) system refers to understanding its perfor-

mance and limitations. The goal of an AO system is to correct wavefront aberrations.

The uncorrected aberrations, called the residual errors and referred to in what follows

simply as the errors, degrade the image quality in the science camera. Understanding

the source of these errors is a great aid in designing an AO system and optimizing its

performance. This chapter explains how to estimate the wavefront error terms and

the relationship between the wavefront error and the degradation of the image. The

analysis deals with the particular case of a Hartmann-Shack wavefront sensor (WFS)

and a continuous deformable mirror (DM), although the principles involved can be

applied to any AO system.

8.2 STREHL RATIO

A figure of merit often used to characterize the error of an AO system is the Strehl

ratio,S. It is defined as the ratio of the maximum value of the measured point-spread

function (PSF) over the maximum value of the diffraction-limited PSF. Consequently,

the Strehl ratio lies between zero and one, with values greater than 0.8 corresponding

to essentially diffraction-limited images. The Strehl ratio is related to the wavefront

errors via the Maŕechal approximation,[1]

S = exp[−σ2

φ] exp[−σ2

χ], (8.1)
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whereσ2

φ is the wavefront phase variance andσ2
χ is the variance of the log-normal

amplitude at the pupil plane. The amplitude varies if the pupil is not uniformly

illuminated or, in the case of astronomical or horizontal path adaptive optics, if the

wave propagates large distances after being aberrated, a phenomenon referredto as

scintillation. The human eye is more simplistic in this regard owing to the close

proximity of the optics of the eye to its pupil, which prevents the occurence of

significant scintillation effects. Equation (8.1) is accurate for RMS phase errors less

than 1 radian; even when the approximation does not hold, it is still true that the

larger the phase aberration, the lower the Strehl ratio. For this reason, the Strehl ratio

has found wide spread use in adaptive optics. Since the Strehl ratio is a function

of the phase,φ, which is related to the wavefront aberration,W , via φ = W2π/λ,

it increases with increasing wavelength,λ. One should include the wavelength

whenever the Strehl ratio is quoted.

An AO system with a single wavefront corrector conjugate to the pupil plane,

which occurs in all current vision science systems, can only correct the wavefront

aberrations and not the scintillation. In addition, since there is only one WFS, the

wavefront aberration is only measured at one angle, the optical axis of the WFS.

Hence the goal of any vision science AO system is to minimize the on-axis wavefront

error.

The Strehl ratio can be used during the calibration process to gauge the image

quality on a point-like light source (hereafter called apoint source) located where the

retina of the eye would be. Measuring the Strehl ratio is more complicated than it
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appears.[2] Five steps are required to calculate the Strehl from well-sampled images

(i.e., the core of the image is at least four pixels wide):

1. Determine the diffraction-limited PSF using Fourier optics.[3] This is relatively

easy if the PSF is monochromatic, but requires a weighted average over the

passband if the source has a large spectral width. Normalized the PSF such

that the total intensity is unity.

2. Find the maximum of the diffraction-limited PSF using some sub-pixel inter-

polation method. FFT interpolation works well if the data is well sampled.

3. Find the total flux of the image. This is especially difficult when the pixel size

is small and there are a lot of pixels over which to sum the intensity. Each

pixel measurement has an associated error, and these errors can dominate when

the number of pixels is large. Similarly, accurate background subtraction is

imperative: small errors in the value of the background can result in large

errors in the Strehl estimate. To reduce the error in the flux estimate, the area

over which the total flux is estimated must be windowed, at the expense of

overestimating the Strehl. Windows with large radii result in estimates that are

noisier but less biased. Normalize the image intensity.

4. Find the maximum of the normalized image using the same interpolation

method.

5. Dividie the maximum value of the normalized image by the maximum value

of the diffraction-limited PSF to obtain the Strehl ratio.
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Another image quality metric that is commonly used is the full-width half-

maximum (FWHM) of the image. As the name suggests, this quantity describes

the angular distance between opposite points where the intensity is equal to half the

peak intensity. If a point source is imaged, the resulting FWHM is often called the

resolution of the optical system.

The FWHM has an obvious meaning when the data is continuous and one dimen-

sional but is more difficult to define from images, which are inherently pixelated and

two dimensional. In practice, the FWHM is computed by assuming that the core of

the image is approximately Gaussian. The standard deviation of the intensity dis-

tribution is calculated over a window with a length of about six standard deviations

centered around the peak. The FWHM of a Gaussian is equal to 2.355 times its

standard deviation.

The FWHM is hence very easy to calculate for spots with a Gaussian profile and is

relatively insensitive to noise and background subtraction, since few pixels are used.

The disadvantage of this metric is that it is not directly related to the wavefront error:

it is much more sensitive to low-order aberrations, such as tip, tilt and defocus than

to high-order aberrations.

In the sections that follow, the wavefront error terms are presented along with a

description of how to calculate them. The effect of all these wavefront errors is to

reduce the Strehl ratio and to increase the FWHM of the images.
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8.3 CALIBRATION ERROR

The termcalibration error refers to the residual wavefront error in the absence of

any external aberrations. In the absence of calibration error or aberrations externalto

the AO system, a point source at the location of the retina should result in a perfect

diffraction-limited image in the science camera. This does not occur because there

are optical aberrations in the common path and in the imaging path. An aberration

can be placed on the DM during the calibration process to compensate for these

aberrations: the process of estimating and applying the desired aberration is known

as image sharpening and is discussed in Ch. 7.11. Because some errors in the camera

can be eliminated through the image sharpening process, camera and calibration

errors are bundled together.

The aberration introduced on the DM and imperfections in the lenslet array lead

to the decentering of the WFS spots from their nominal positions. The resulting

centroids are defined to be the reference centroids (also known as centroid offsets)

and are subtracted from the measured centroids when the AO loop is closed. If the

reference centroids are inaccurate, for example, if the optics in the AO system are

misaligned or if the measurement of the reference centroids is noisy, then there will

be additional calibration errors.

The calibration error can be measured by closing the loop and simultaneously

imaging a point source with no external aberrations. Then one can measure the

Strehl ratio,SCALIB, as described in Sect. 8.2 and use the Maréchal approximation

to calculate the wavefront error,σCALIB.



6

However, images of a point source contain much more information that just the

wavefront error: it is also possible to derive the wavefront itself. Phase retrieval

algorithms estimate the amplitude and phase at the pupil plane from intensity mea-

surements at the image plane and knowledge of the size of the pupil.[4, 5] Additional

constraints, such as prior information about the wavefront or amplitude of the pupil

or noise in the image can be incorporated in the algorithm. The disadvantage of

this class of algorithms is that if the pupil is symmetric, there is an ambiguity about

the sign and the orintation of the phase so this information cannot be easily used

for image sharpening.[6] For example, images acquired through a circular pupilthat

have a positive or a negative defocus aberration look identical. In addition, these

algorithms work best if a point source is being imaged. Both these issues can be

resolved by implementing phase diversity.[7, 8] Here, two images are captured: one

at the focal plane and one slightly out of focus. The extra information obtained allows

one to resolve the ambiguity problem and also to estimate the object if it is not a point

source.[9] The resulting phase estimate can be fed back to improve the calibration of

the system. For example, a phase diversity algorithm by Loefdahl and Scharmer is

employed at Keck Observatory to remove low-order aberrations.[10]

8.4 FITTING ERROR

The fitting error is defined to be the component of the wavefront aberration that the

DM cannot fit. This error depends on the spatial characteristics of the aberrations
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to be corrected and on the spatial characteristics of the DM, such as the spacing,

influence function and stroke of the actuators.

To a good approximation, a continuous DM such as those produced by Xinetics

can be thought of as a high-pass spatial filter with a cutoff spatial frequency given

by the Nyquist criterion of the actuator positions (the inverse of twice the spacing

between adjacent actuators). Then any power in the power spectral density at spatial

frequencies lower than the Nyquist criterion will be corrected while any spatial

frequencies higher will contribute directly to the fitting error.[11] This implicitly

assumes that the actuator influence is a sinc (the Fourier transform of a rectangle

function) interpolator, which is only approximately true. Hence the fitting error will

be larger in practice.

If the actuator influence function and the wavefront aberration are known, the

fitting error can be found by doing a least-squares fit of the actuator influence functions

to the wavefront. The residual is the fitting error.

If the AO system has a WFS with a finer spatial resolution than the DM (e.g., a

Hartmann-Shack WFS with the length of the lenslets smaller than the interactuator

spacing), then the residual centroid data can be used to estimate the fitting error up to

the Nyquist sampling rate of the WFS. A set of many residual centroid measurements,

s[n], is taken when the loop is closed on the eye, and these measurements averaged

across the frames, givings. The component that can be corrected by the AO system

is removed to give the uncorrectable residual,

s̃ = s − MRs, (8.2)
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whereM is the influence matrix formed by pushing the actuators one by one and

measuring the centroids andR is the reconstruction matrix. The final step is to

converts̃ into a wavefront by using a geometric zonal reconstructor.[12, 13] Fig. 8.1

shows the fitting error observed on one subject’s eye using the AO system at Indiana

University, which has 37 actuators and 221 subapertures. The RMS value of this

wavefront was found to be 41 nm and this is the fitting error,σFITTING.

Fig. 8.1 The fitting error over the 6.5 mm pupil of an eye using the Indiana University AO

system. The RMS fitting error is 41 nm.

8.5 MEASUREMENT AND BANDWIDTH ERROR

The two remaining sources of error to be described in this chapter are measurement

error and banwidth error. The measurement error term is due to noise in the wavefront

slope measurement propagating through the control loop to the mirror. The bandwidth

error is due to the component of the turbulence that is not compensated by the AO

system due to the fact that the AO system does not respond instantaneously. It
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depends on the dynamic response of the controller and on the dynamic changein the

aberrations of the eye.[14] In order to calculate the measurement and the bandwidth

errors, it is necessary to first model the dynamic behavior of the adaptive optics

system. The analysis presented here draws heavily from control theory, including the

application of Laplace and z-transforms. The reader unfamiliar with this material is

referred to textbooks on control theory[15] and signal processing.[16]

8.5.1 Modeling the dynamic behavior of the AO system

The dynamic behavior of an AO system can be modeled using the blocks displayed

in Fig. 8.2.[17] First, the wavefront sensing camera stares at the residual wavefront

for one sampling period. This is followed by a computational delay,τc, which

corresponds to the lag between the moment the camera stops integrating and the

time that the voltages are updated in the DM. This consists of the time taken to

read the CCD, compute the centroids, multiply the centroids by the reconstruction

matrix and calculate the new voltages. The compensator calculates the voltages tobe

applied from the previous voltages and the reconstructed wavefront. Typically, the

compensator consists of an integral controller of the form

y[n] = y[n − 1] + ku[n], (8.3)

wherek is a variable loop gain,y[n] is the output from the compensator andu[n] is the

input to the compensator at timen. The transfer function of the integral compensator
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can be written as

HCOMP(z) =
k

1 − z−1
, (8.4)

wherez is the complex Z-transform variable. Eq. (8.4) can be rewritten in the

Laplace domain by substitutingz = exp[sT ]. Finally, the mirror is held in position

for one sampling period. This is called a zero-order hold because it is a zeroth order

(constant) approximation to the temporal evolution of the wavefront.

Fig. 8.2 Schematic of the control loop.

+
Stare

+

−

+

CompensatorMirror M(f) ZOH Delay

Noise N(f)Diagnostic D(f)

Aberrations X(f)

The transfer functions of the individual blocks are as follows:

1. Camera stare and the zero-order hold with sampling periodT = 1/fs, where

fs is the sampling frequency:

HSTARE(s) = HZOH(s) =
1 − exp[−sT ]

sT
. (8.5)

2. Computational delay timeτc:

HDELAY(s) = exp[−sτc]. (8.6)

3. Integral compensator with gaink:

HCOMP(s) =
k

1 − exp[−sT ]
. (8.7)
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In the above equations,s = i2πf is the complex frequency variable, wheref is

the frequency andi =
√
−1. In what follows, all the blocks will be written withf as

the argument, sincef has a more intuitive meaning thans and is computed directly

from the discrete Fourier transform (DFT) of the diagnostic data from the AO system.

In order to calculate the wavefront errors, we must convert centroid measurements

from diagnostics into wavefront aberrations. The residual mirror commands are

the corrections to the current mirror position that would be applied if the loop gain

were equal to unity. If the reconstruction matrix isR and the vector of centroid

measurements iss, then the residual mirror commands,a are given bya = Rs.

Then, using the relationship between the mirror commands (actuator voltages) and

the induced wavefront, we obtain a wavefront aberration at the position of each

actuator. For continuous DMs, cross-talk between the actuators can be well-modeled

as a convolution of the actuator voltages with the response of the neighboring actuators

to the applied voltage.[18]

The entire feedback arm of the loop,H(f), can be written as the product of all

the blocks:

H(f) = HSTARE(f)HDELAY(f)HCOMP(f)HZOH(f). (8.8)

There are two inputs into the control system: aberrations of the eye,X(f) and the

noiseN(f), which is assumed to be white (same power at all temporal frequencies).

Likewise, there are two outputs: the mirror position,M(f), and the residual mirror

commands obtained in the diagnostics,D(f). The position of the diagnostics in the

control loop is just after the addition of the noise, while the mirror position is just
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after the zero-order hold. For notational simplicity, we consider the noise to be input

before, rather than after, the stare. This assumption has little impact on the transfer

function of the control loop.

The transfer functions relating the outputs (the mirror position and centroid diag-

nostics) to the inputs (the aberrations of the eye and measurement noise) are:

D(f) =
1

1 + H(f)
(X(f) + N(f)) (8.9)

and

M(f) =
H(f)

1 + H(f)
(X(f) + N(f)). (8.10)

Fig. 8.3 plots the modulus squared of these transfer functions for a hypothetical

adaptive optics system with the following parameters:T = 0.05 s, τc = 0.05 s and

k = 0.25.

Fig. 8.3 Plots of|1/(1 + H(f))|2 (top curve) and|H(f)/(1 + H(f))|2 (bottom curve).
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8.5.2 Computing temporal power spectra from the diagnostics

The time series of the residual wavefront at each actuator location is converted to a

power spectrum using the DFT. In practice, the fast Fourier Transform (FFT) is often

used for speed of computation. The definition of the DFT used in this chapter is

D(k) =
1√
K

K
∑

n=1

d[n] exp

[−i2π(k − 1)(n − 1)

N

]

, (8.11)

whereK is the number of diagnostic frames. This definition maintains power of the

coefficients equal in either domain,i.e.,

K
∑

k=1

D(k)2 =

K
∑

n=1

d[n]2. (8.12)

The power spectrum of the diagnostics is taken using the discrete Fourier transform:

|D(k)|2 = |DFT[d[n]w[n]]|2, (8.13)

wherew[n] is a windowing function used to avoid spectral leakage due to the non-

periodicity ofd[n], the residual wavefront as measured by the diagnostics. To convert

to frequency space, we use the relationships

D(f) = D(fsk/K). (8.14)

and

D(−f) = D(fs − fsk/K). (8.15)

Common windows include the Hanning, Hamming and Blackman-Harris windows.

There is a trade-off in eliminating the effect of spectral leakage at the expense ofa

reduction in spectral resolution inherent in each window. Care must be taken to scale
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w[n] to ensure that the average power in the window is unity:

K
∑

n=1

w[n]2 = K. (8.16)

The power spectrum is then averaged over all the actuators and, if possible, over

several sets of power spectra from the same eye. While the power spectrum is used to

compute the error terms, the power spectral density (PSD), is often used for plotting

purposes. The PSD is a continuous function with dimensions of wavefront squared

per Hertz and is obtained by dividing the power spectrum byKT . The PSD is

usually displayed with the positive frequencies doubled and the negative frequencies

discarded.

Another number of interest is the cross-over frequency, which is defined to be

the lowest frequency at which there is no correction. In Fig. 8.3, this occurs at 1

Hz. In practice, it is usually determined by plotting the closed-loop power spectrum

superimposed on the open-loop power spectrum and determining where these two

curves first cross.[19]

8.5.3 Measurement noise errors

The measurement noise squared error,σ2
NOISE

, is given by

σ2

NOISE =
∑

∣

∣

∣

∣

H(f)

1 + H(f)

∣

∣

∣

∣

2

|N(f)|2, (8.17)

where the summation is for all the discrete values off ∈ [−fs/2, fs/2).
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The noise power spectrum may be computed from first principles using knowledge

of the spot size, the light level and the characteristics of the WFS camera, such as the

dark current and readout noise.[20]

Alternatively, the noise can be calculated from the power spectrum. By inspection

of Fig. 8.3, it can be seen that the loop transfer function for the noise as seen by the

diagnostics is close to unity at high frequencies. If the noise power is dominant over

the aberration power at high temporal frequencies, the noise is given by the valueof

the power spectrum in the region close to half the sampling frequency. One can tell if

this is the case by verifying that the power spectrum follows the|H(f)/(1+H(f))|2

curve at high frequencies. Since the noise is assumed to be white, this is an estimate

of N(f) at all frequencies.

Fig. 8.4 plots the PSD of the residual aberrations using data from Keck Obser-

vatory’s astronomical AO system. The PSD value of|N(f)|2 may be read from the

plot as the value of the PSD forf = 200 Hz, converted to a power spectrum value

and inserted in Eq. (8.17) to calculate the measurement noise error. Inserting the

value of the noise floor from the diagnostics into Eq. (8.17) gives

σ2

NOISE =
∑

∣

∣

∣

∣

H(f)

1 + H(f)

∣

∣

∣

∣

2

|D(fs/2)|2. (8.18)

8.5.4 Bandwidth error

The bandwidth squared error is given by

σ2

BW =
∑

∣

∣

∣

∣

X(f) − H(f)

1 + H(f)
X(f)

∣

∣

∣

∣

2
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Fig. 8.4 Power spectral density in nm2Hz−1 of the residual aberrations using the residual

centroid measurements obtained at Keck Observatory. The theoretical noise curveis superim-

posed.

=
∑

∣

∣

∣

∣

X(f)

1 + H(f)

∣

∣

∣

∣

2

. (8.19)

The diagnostics measure the bandwidth error with an added noise term due to the

noise on the centroid measurement propagating through the control loop:

D(f) =
X(f) + N(f)

1 + H(f)
. (8.20)

Combining Eqs. (8.19) and (8.20) gives the bandwidth squared error:

σ2

BW =
∑

(

|D(f)|2 −
∣

∣

∣

∣

1

1 + H(f)

∣

∣

∣

∣

2

|N(f)|2
)

, (8.21)

and it is evaluated by inserting the measured values of|N(f)|2 and|D(f)|2 into Eq.

(8.21).
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8.5.5 Discussion

The gain,k, and frame rate,fs, should be chosen so as to minimize the sum of the

bandwidth and measurement error terms, which depend on the temporal power spec-

trum of the eye aberrations and the brightness of the spots on the WFS respectively.

The optimal trade-off can be achieved by calculating the two terms using residual

centroids and a dynamic model of the system or simply by adjusting the parameters

and evaluating the image quality. If the measurement error term dominates, then the

frame rate or gain should be reduced. In addition, one would think about improving

the centroiding algorithm. The accuracy of the slope estimate can be improved by

implementing background subtraction (and reducing the background), flat-fielding,

removing bad pixels, optimizing the area over which the centroid is calculated and

using maximum correlation[21] instead of a centroid algorithm. On the other hand,

if the bandwidth error dominates, then increasing the frame rate or the loop gain (up

to a point) is beneficial. In addition, an improved controller design may reduce the

bandwidth error.[17, 22]

8.6 ADDITION OF WAVEFRONT ERROR TERMS

If all the error terms are statistically independent, then the total error is equal to the

sum in quadrature of the individual error terms:

σTOTAL =
√

σ2
CALIB

+ σ2
FITTING

+ σ2
BW

+ σ2
NOISE

(8.22)
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Using the Maŕechal approximation,

STOTAL = SCALIBSFITTINGSBWSNOISE, (8.23)

where, for instance,SNOISE is the Strehl degradation due to the noise wavefront

error variance,exp[−σ2
NOISE

]. The fact that the error terms are added in quadrature

implies that the total error is dominated by the largest error terms and small terms

have a negligible effect on the image quality. It is more important to accurately

measure and, where possible, mitigate the large error terms rather than focusing on

small sources of error.

Other aberrations that might have a significant bearing on the error budget are

chromatic aberration if the wavefront sensing occurs at a different wavelength to the

science imaging and anisoplanatism, which occurs when the light takes a different

path to the science camera relative to the WFS.
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